Audio Signal Processing

Vipul Arora Department of EE, IIT Kanpur

WiSSAP Class Rules

- 1. Ask questions
- 2. Ask questions
- 3. Ask questions
- 4. Ask questions
- 5. ...

Source: internet

Music in Society

Source: internet

Music and Health

Source: internet

Music and Development

Audio Signal Processing and Al

This Photo by Unknown Author is licensed under CC BY-NC-ND

This Photo by Unknown Author is licensed under CC **BY-SA-NC**

This Photo by Unknown Author is licensed under CC BY

We Are Augustines - Juarez (Official V

We Are Augustines - Chapel Song

We Are Augustines - Book of James

We Are Augustines - Book Of James [

Of Monsters And Men - Little Talks (O

alt-J (∆) Breezeblocks

ugustines - Cruel City

This Photo by Unknown Author is licensed under CC BY-NC


```
This Photo by Unknown Author is licensed under CC BY-SA-NC
```


Listen

This Photo by Unknown Author is licensed under <u>CC BY-NC-ND</u>

This Photo by Unknown Author is licensed under <u>CC BY-NC</u>

Digital Audio

Sampling

- Nyquist Sampling theorem
- Humans can hear in the range 20Hz to 20kHz
- Popular: 44.1kHz for CD recordings

Quantization

- Converting $x \in \mathbb{R}$ to a digital number
- Q bits per sample => 2^{Q} possible integer values per sample
- Popular: 16 bits per sample for CD recordings

Waveforms

Audacity

Processing ... we need mathematical model

Praat

Fourier Transform

$$X[k] = \sum_{n=0}^{N-1} x[n] e^{-j\frac{2\pi}{N}kn}$$
; $n = 0, ..., N-1$

x[n]

-1

-2

1

-1

-2

Ó

x[n]

Ó

10

10

20

20

n

n

30

30

 $x[n] = sin(2\pi * 2/32 * n)$

$$x[n] = 0.5 * sin(2\pi * 2/32 * n)$$

+ 0.5 * sin(2\pi * 8/32 * n)

Varying the Pitch

ار ((ا

Spectra of speech

• Sounds with periodic waveforms: /a/, /i/, /m/

• Sounds with aperiodic waveforms: /s/, /f/

Filter Theory

Y[k] = X[k]H[k]

Source Filter Model

• Linear Time-Invariant (LTI) filters

How do I make real applications with this?

Designing Representations

Representations should be

- minimal in size
- distinguishing for what we are interested in
- invariant to what we are not interested in
- Design the space so it may have uniform sensitivity (more in Audio Retrieval hands-on by Anup)

Designing Representations

- for Pitch
 - Look at the peaks of spectrum
- for instrument/phoneme
 - Look at the spectral envelope

 $A_{dB} = 20 \log_{10} A$

Frequency

• $\tilde{f} \propto \log f$

Spectral Envelope

- $\left| X[\tilde{f}] \right|_{dB}$
- Mel-frequency, dB amplitude
- Take low frequency components of Fourier transform (DCT) of $|X[\tilde{f}]|_{dB}$

You are ready!!!

This Photo by Unknown Author is licensed under <u>CC BY-NC-ND</u>

<u>This Photo</u> by Unknown Author is licensed under <u>CC</u> <u>BY-SA-NC</u>

This Photo by Unknown Author is licensed under <u>CC BY</u>

(()) Mix - We Are Augustines - Juarez (Offic

We Are Augustines - Chapel Song

We Are Augustines - Book of James

We Are Augustines - Book Of James [

Of Monsters And Men - Little Talks (O

alt-J (∆) Breezeblocks

ugustines - Cruel City

This Photo by Unknown Author is licensed under CC BY-NC

This Photo by Unknown Author is licensed under CC BY-SA-NC

IE LINGUISTICS	AATTHEWS STRUCTURAL LINGUISTIC Matthews Syntactic Relations	EVERYTHING THAT LINGL	e germanistische Linguistik 3.8. Merzie Undernending derening der Der Linguistik	SYNTACTIC THEORY I Bynamic Authynmetry Moo	MUYSKEN FUNCTIONAL Categories	Generative Linguistics PREDERICK J. Mahayuma Sentence Processing in East A	Linguistics: The Cambridge Sur Newmeyer	Linguistics: The Cambridge Surve desmoyer
								N N

Not yet

- Dynamic behavior
- Time Series Analysis

Short Time Fourier Transform

Short Time Fourier Transform

It is possible

But only in ideal situations

Real-world Variations

- Context (co-articulation)
- Running speech
- Speakers, instruments
- Languages
- Recording equipment
- Acoustic conditions

))

Machine Learning

- Parametric models to learn the feature transformations
- Learn the mappings from
 - speech to text
 - audio to audio
 - audio to labels/classes
 - audio to recommendations

$\theta = \operatorname{argmin}_{\theta} \mathcal{L}(y, \hat{y}; \theta)$

Supervised Learning

- Gaussian Mixture Model
- Hidden Markov Model
- Multi-Layer Perceptron
- Support Vector Machine
- Convolutional Neural Network
- Recurrent Neural Network
- Transformers

Source: PRML Bishop and https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

Bottleneck (x, y)

Self-supervised Learning

Use F_{θ} instead of hand designed representations!

