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Overview of VC
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Figure 1: Schematic overview of the human speech production mechanism

G(w) is the frequency response of the excitation signal iy /t S e ()
0

H(w) is the frequency response of the transformation function

X (w) is the frequency response of the output speech signal
X(w) = G(w)H (w) 2

[1] Lawrence R. Rabiner, & Ronald W. Schafer (2007). Introduction to Digital Speech Processing. Found. Trends Signal Process., 1, 1-194.
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Figure 2: Categorization of the speech synthesis processes

Figure 3: Schematic overview of the VC process

[2] Berrak Sisman, Junichi Yamagishi, Simon King, & Haizhou Li (2020). An Overview of Voice Conversion and Its Challenges: From Statistical Modeling to Deep Learning. /EEE/ACM Transactions on Audio, Speech, and Language
Processing, 29, 132-157.
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Figure 5: Implementation of the three-stage pipeline in the training and conversion phase of the VC process
[3] M. T. Akhter, P. Banerjee, S. Dhar and N. D. Jana, "An Analysis of Performance Evaluation Metrics for Voice Conversion Models," 2022 IEEE 19th India Council International Conference (INDICON), Kochi, India, 2022, pp. 1-6, 5

doi: 10.1109/INDICON56171.2022.10040000.
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Figure 7: Schematic overview of the parallel VC and non-parallel VC process

Dataset: Voice Conversion Challenge (VCC) 2016 is a parallel speech dataset consisting of speech
samples recorded in US English accents in both male and female voices. Meanwhile, VCC 2018,
VCTK, etc., are non-parallel speech datasets recorded in various English accents (including US

English)
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Figure 8: Schematic overview of the mono-lingual and cross-lingual VC

Dataset: VCC 2016, VCC 2018, VCTK, and CMU ARCTIC are mono-lingual datasets
(recorded in US English accent). On the other hand, VCC 2020 is a widely used
cross-lingual dataset recorded in English, Finnish, German, and Mandarin.

[4] S. Dhar, N. D. Jana and S. Das, "An Adaptive-Learning-Based Generative Adversarial Network for One-to-One Voice Conversion," in IEEE Transactions on Artificial Intelligence, vol. 4, no. 1, pp. 92-106, Feb. 2023, doi:

10.1109/TA1.2022.3149858.
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[5]S. Dhar, N. D. Jana and S. Das, "An Adaptive-Learning-Based Generative Adversarial Network for One-to-One Voice Conversion," in IEEE Transactions on Artificial Intelligence, vol. 4, no. 1, pp. 92-106, Feb. 2023, doi:
10.1109/TAL.2022.3149858.
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Figure 11: Overview of the emotional VC Figure 12: Schematic overview of the dysarthric to normal VC
Dataset: Most of the existing emotional VC datasets, such as the emotional speech dataset (ESD), Dataset: EasyCall corpus dataset is a well known dysarthric speech dataset.

contain emotions such as neutral, happy, angry, sad, surprised, etc.

[6] S.Dhar, M. T. Akhter, P. Banerjee, N. D. Jana and S. Das, "FID-RPRGAN-VC: Fréchet Inception Distance Loss based Region-wise Position Normalized Relativistic GAN for Non-Parallel Voice Conversion,” 2023 15th Asia Pacific
Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC), Taipei, Taiwan, 2023, pp. 350-356, doi: 10.1109/APSIPAASC58517.2023.10317438.
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Figure 13: Singing voice conversion

Dataset: Singing Voice Conversion Challenge (SVCC) 2023 Dataset, each speaker records 10 songs from a selection of 20 songs, making the dataset semi-parallel.

[7] State-of-the-art Singing Voice Conversion methods (Link: https://medium.com/qosmo-lab/state-of-the-art-singing-voice-conversion-methods-12f01b35405b).

10



Overview of VC (continue)

F— | Evaluation of VC |
| Objective Evaluation ] lSubjective Evaluation |
Structural Similarity Index (SSIM), l Y isinilebihdet i
Spectral Loss,

Speech to Noise Ratio (SNR), etc.

Figure 14: Evaluation metrics for VC model generated speech samples

Mel-Cepstral Distortion (MCD):

k
. 10 - 2 {It measures the global structural differences between
MCD[dB] = 2 E (mech — mech) 3 ¢
d=1

log 10 the spectral features}
o

Modulation Spectra Distance (MSD):

1 N 2 4) {It measuring the local structural difference between
MSD = — E (s( y): - S(y): B the original and the converted speech samples in
N N

i=1 spectral domain}

N
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log Fo RMSE = \| =3 (log Foi ~log Fo})  (5)
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[3] M. T. Akhter, P. Banerjee, S. Dhar and N. D. Jana, "An Analysis of Performance Evaluation Metrics for Voice Conversion Models," 2022 IEEE 19th India Council International Conference (INDICON), Kochi, India, 2022, pp. 1-6,
doi: 10.1109/INDICON56171.2022.10040000. 11



Generative Adversarial Network (GAN) based VC
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Figure 15: Basic framework of a typical GAN-based VC system

[8] Goodfellow, LJ., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A.C., & Bengio, Y. (2014). Generative Adversarial Nets. Neural Information Processing Systems.
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GAN based Baseline VC models

Baseline Models (non-parallel VC):

e  CycleGAN-VC (One-to-One) [EUSIPCO 2018]
a CycleGAN-VC2 [ICASSP 2019]
a CycleGAN-VC3 [Interspeech 2020]
a MaskCycleGAN-VC [ICASSP 2021]

StarGAN-VC (Many-to-Many) [Spoken Language Technology Workshop (SLT) 2018]
a StarGAN-VC2 [Interspeech 2020]

[9] CycleGAN-VC: Parallel-Data-Free Voice Conversion Using Cycle-Consistent Adversarial Networks https://www.kecl.ntt.co.jp/people/kaneko.takuhiro/projects/cyclegan-vc/

13
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Figure 16: Schematic Overview of CycleGAN

[10] Zhu, Jun-Yan et al. “Unpaired Image-to-Image Translation Using Cycle-Consistent Adversarial Networks.” 2017 IEEE International Conference on Computer Vision (ICCV) (2017): 2242-2251. 14
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[11] T. Kaneko and H. Kameoka, "CycleGAN-VC: Non-parallel Voice Conversion Using Cycle-Consistent Adversarial Networks," 2018 26th European Signal Processing Conference (EUSIPCO), Rome, Italy, 2018, pp. 2100-2104,
doi: 10.23919/EUSIPCO.2018.8553236.

Figure 18: Working Mechanism of CycleGAN-VC Model
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Figure 19: Working Mechanism of MaskCycleGAN-VC Model with MelGAN vocoder

[12] T. Kaneko, H. Kameoka, K. Tanaka and N. Hojo, "Maskcyclegan-VC: Learning Non-Parallel Voice Conversion with Filling in Frames," ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP), Toronto, ON, Canada, 2021, pp. 5919-5923, doi: 10.1109/ICASSP39728.2021.9414851.
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Motivation

The motivation of the work:

* Prior research employed features such as MCCs, MS13] etc., to compute feature-specific loss for training GAN-based VC models. Notably,
the utilization of the Fréchet inception distance (FID) as a loss function in VC research has been relatively unexplored, primarily confined to
the domain of image synthesis.

¢ In astandard GAN, the discriminator is typically represented as D(z) = sigmoid(C(z)). Conversely, the relativistic discriminator considers
both real and fake data pairs & = (z,,2), and it is defined as D(&) = sigmoid(C(z,) — C(zy)). This approach assesses that real data is more
authentic than randomly generated fake data and provides a scope to employ in GAN-based VC to explore its impact.

The contributions of the proposed work:

* Utilisation of a hybrid normalization technique named as region-wise positional normalization (RPN).

* Incorporation of Gaussian error gated linear unit (GEGLU) as an activation function.

* Inclusion of relativistic discriminator to trace the similarity between the latent representation of real and generated mel-spectrogram.
¢ Incorporation of FID metric as a loss function in GAN training,.

[13] S. Dhar, M. T. Akhter, P. Banerjee, N. D. Jana and S. Das, "FID-RPRGAN-VC: Fréchet Inception Distance Loss based Region-wise Position Normalized Relativistic GAN for Non-Parallel Voice Conversion," 2023 Asia
Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC), Taipei, Taiwan, 2023, pp. 350-356, doi: 10.1109/APSIPAASC58517.2023.10317438.
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Proposed Model: FID-RPRGAN-VC

Title:- FID-RPRGAN-VC: Fréchet Inception Distance Loss based Region-wise Position Normalized Relativistic GAN for Non-Parallel Voice Conversion
(Accepted in APSIPA-23)

Authors: SANDIPAN DHAR , MD. TOUSIN AKHTER , PADMANABHA BANERJEE, NANDA DULAL JANA , SWAGATAM DAS
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Figure 20: Use of FID metric in image synthesis
[14]J. Lee and M. Lee, "FIDGAN: A Generative Adversarial Network with An Inception Distance," 2023 International Conference on Artificial Intelligence in Information and Communication (ICAIIC), Bali, Indonesia, 2023, 18

pp- 397-400, doi: 10.1109/ICATIC57133.2023.10066964.
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Figure 21: The schematic overview of the proposed FIDRPRGAN-VC model
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Utilisation of a hybrid normalization technique named as region-wise positional normalization (RPN).
Incorporation of Gaussian error gated linear unit (GEGLU) as an activation function.

G(.) = u(uio(r(da—1(d(.)))))- (10)
The components of G/(.) are represented mathematically
below,
d(.) - GEGLU((IN(Conv2D(.))), (11)
ds_1(.) — RPN (Convl1D(.)), (12)

r' - ri71 @ IN(ConviD(GEGLU(IN(ConvlD(ri71))))), (13)

here, r* indicates the 7" residual block.
u;_2(.) = RPN(Conv1D(.)), (14)
u(.) - GEGLU(IN(PS(Conv2D(.)))). (15)

20
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[15] Yu, Tao et al. “Region Normalization for Image Inpainting.” ArXiv abs/1911.10375 (2019): n. Pag,
[16] Ulyanov, Dmitry et al. “Instance Normalization: The Missing Ingredient for Fast Stylization.” ArXiv abs/1607.08022 (2016): n. pag.. 21
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Gated Linear Unit (GLU): Gaussian Error Gated Linear Unit (GEGLU):

{Input sentence } ~ , ,
— ) GEGLU(x , Wy, Wy, by, by) = GELU(x W +by)®
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x Wy 2),
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[17] Dauphin, Yann et al. “Language Modeling with Gated Convolutional Networks.” International Conference on Machine Learning (2016)
[18] Hendrycks, Dan and Kevin Gimpel. “Gaussian Error Linear Units (GELUS).” arXiv: Learning (2016): n. pag.
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3. Inclusion of Relativistic Discriminator
4. Incorporation of FID metric as a loss function

The architectural framework of the relativistic discriminator D(.) (i.e. both D, and D) can be written as follows

: D(.) = Conv2D(d;(GEGLU(Conv2D(.)))),
¥ 20
i by )}0( D (x) — Dx(%)I1,) Ul -l 2

.
L% = o(||Dx(x) — Dx (%)), 1)

‘ Dy (%)

l L (x) L34 = FID(I(x), (%)),

< x); Ic(X A 2
; i i } FID (I (x), 1x (%)) FID(Ix(x), Ix(})) = ||p1.(x) — M)l + Tr(CL ) (22)
‘ + B — 2(51, 00 S1.%)) )

[19] Jolicoeur-Martineau, Alexia. “The relativistic discriminator: a key element missing from standard GAN.” ArXiv abs/1807.00734 (2018): n. pag.
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Dataset:

The considered models are trained and tested on VCC 2018 , and CMU Arctic dataset. For the VCC 2018 dataset, the considered
speakers are VCC2TM1, VCC2SM3, VCC2TF1, and VCC2SF3. Whereas, for the CMU Arctic dataset, the regarded speakers
are cmu-us-bld-Arctic, cmu-us-rms-Arctic, cmu-us-clb-Arctic, and cmu-us-slt-Arctic. For both the datasets, 81 speech
samples and 35 speech samples were considered for training and testing, respectively. For CMU-Arctic dataset, we have
considered 116 (i.e. 81 for training and 35 for testing) speech samples for each speakers such that the utterances are disjoint.
The particular setting is considered for making the training process non-parallel.

Additionally, we evaluated the performance of the proposed model for Easycall Dysarthric dataset. The Easycall dataset
contains parallel speech content for both normal and dysarthric speakers. Here, four speakers belonging to the male and female
genders are considered. For each of the speakers, 264 samples were considered for training, and 66 samples considered for
testing.

24
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Training Details:

For training the FID-RPRGAN-VC model, Adam optimizer is used with learning rate 0.0001. The proposed model is trained for
1000 epochs. The mini-batch size is considered as 1. In this work, pretrained MelGAN vocoder is used for mel-spectrogram to
audible speech synthesis. The size of the mel-spectrograms considered here is 2x80x64. The mask size here is taken as 25% of the
input size (along horizontal axis i.e. width).

The complete execution of the proposed FID-RPRGAN-VC model is carried out in the Dell precision 7820 workstation configured
with ubuntu 18.04 64 bit Operating System, Intel Xeon Gold 5215 2.5GHz processor, 96GB RAM, and Nvidia 16GB Quadro
RTX5000 graphics. All the experiments of this work are implemented in Python 3.6.9 using Pytorch 1.1.2 and Numpy 1.19.5. The
audible speech data are preprocessed by using Librosa 0.9.1.

25



Proposed Model: FID-RPRGAN-VC (continue)

Objective Evaluation:

Table 1: MCD, MSD and F RMSE values for VCC 2018 and CMU-Arctic

dataset
Dataset Models M-M  F-F M-F F-M
MCD
FID-RPRGANVC 640 645 653 673
VCC2018  \kCycleGAN-VC 745 685 676  7.84
MUA FIDRPRGANNC 697 748 80 797
MaskCycleGAN-VC 7.2 781 820 807
MSD
FIDRPRGANVC 115 L4 121 116
VCC2018  \dCycleGAN-VC 117 118 150 124
MU FIDRPRGANYC 116 L1513 13
MaskCycleGAN-VC 118 119 132 129
F, RMSE
vcc s TIDRPRGANNC 1817 2722 3220 %78
MaskCycleGAN-VC 1877 2837 3420 3843
MUAes.  FIDRPRGAN-VC 1500 2181 3171 3193
MaskCycleGAN-VC 1525 2362 3512 3498

ABS(1) indicates the FID-RPRGAN-VC
model without GEGLU (replaced by GLU of
MaskCycleGAN-VC).

ABS(2) indicates the FID-RPRGAN-VC
model without RPN based generator
(replaced by TFAN of MaskCycleGAN-VC).

ABS(3) denotes the FID-RPRGAN-VC model
without relativistic discriminator (replaced
by MaskCycleGAN-VC discriminator).

ABS(4) denotes the FID-RPRGAN-VC model
without FID loss.

Table 2: MCD, MSD and F0 RMSE values for ablation

study
Models M-M  F-F M-F F-M
MCD

FID-RPRGAN-VC  6.40 6.45 6.53 6.73
ABS(1) 6.42 6.47 6.57 6.76
ABS(2) 6.56 6.72 6.75 7.09
ABS(3) 6.46 6.54 6.60 6.98
ABS(4) 6.50 6.61 6.69 711

MSD

FID-RPRGAN-VC 115 1.14 1.21 1.16
ABS(1) 1.16 1.16 1.23 1.17
ABS(2) 1.23 1.27 1.30 1.28
ABS(3) 1.20 1.16 1.24 1.23
ABS(4) 1.21 1.23 1.24 1.21

Fo RMSE

FID-RPRGAN-VC 18.17 27.22 32.20 36.78
ABS(1) 18.23 2730 3228 36.87
ABS(2) 18.54 27.65 32.82 38.38
ABS(3) 18.35 28.02 32.61 3846
ABS(4) 18.41 27.97 32.70 3847

26



Proposed Model: FID-RPRGAN-VC (continue)

Subjective Evaluation:

Table 3: MOS for naturalness with 95% confidence intervals

Dataset Models M-M F-F M-F F-M
VCC 2018 FID-RPRGAN-VC  39+0.29 38+0.18 3.1+035 3440.51
MaskCycleGAN-VC ~ 3.1£032  2.9+042 2.6+023 2.9+024
FID-RPRGAN-VC  37+0.36 3.8+0.18 3.5+0.23 3.8+0.26
MaskCycleGAN-VC ~ 2.9£0.15 3.1£041 32004  3£0.05

CMU-Arctic

Some Generated Samples are available here:

https://drive.google.com/drive/folders/1 5SFDrPz-w5Ri-0h8fglEVsPv8pHVpefVQ
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Figure 22: Visual comparison of mel-spectrograms for MaskCycleGAN-VC and

FID-RPRGAN-VC converted speech
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Conclusion

In this work, we proposed an improved GAN model for mel-spectrogram based VC and referred to it as the FID-RPRGAN-VC model
that consists of a region-wise positional normalized generator, a relativistic discriminator, and a FID loss function.

These modifications aim to generate mel-spectrograms that capture the target distribution better than the SOTA MaskCycleGAN-VC
model.

The proposed model is tested on VCC 2018, CMU Arctic, and Easycall speech datasets. The objective and subjective evaluation of the
FID-RPRGAN-VC generated samples indicates the superiority of the proposed model.

In the future, the GAN-based VC model can also be investigated for speech enhancement purposes. Moreover, there is also a scope to
explore the model for multi-lingual VC.
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