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We feel Emotions

What are emotions?
Damasio (1999) describes an emotion as neural object (or internal emotionalstate)  
as an (non-conscious) neural reaction to a certain stimulus, realised by a complex  

ensemble of neural activations in the brain.

Emotions evolved to help us form bonds and  
relationships.

Gómez, C. C. (2000). Damasio, Antonio (1999). The feeling of what happens Body and emotion in the making of consciousness. New York:  
Harcourt Brace & Company. 386 pp. Persona: Revista de la Facultad de Psicología, (3), 188-192.

Bosse, T., Jonker, C. M., & Treur, J. (2008). Formalisation of Damasio’s theory of emotion, feeling and core consciousness. Consciousness and  
cognition, 17(1), 94-113.
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Musical Emotions Explained
Juslin's research was particularly instrumental
in developing a comprehensive
understanding of musical emotions, which  
identified seven key phenomena:

● brain stem reflex,
● rhythmic entertainment,
● emotional contagion,
● evaluative conditioning,
● episodic memory,
● mental visual imagery, and
● musical expectancy

Juslin, P. N. (2019). Musical emotions explained: Unlocking the secrets of musical affect. Oxford University Press, USA.
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Brain Inspired Music Emotion Recognition
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Emotional  
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lyrics in a Song
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Recordings from LiveConcerts

❖

❖

Live recordings lacks acoustic shielding

Microphone intended to pick specific  
source picks up the other sources as wellhttps://images.app.goo.gl/g9MPV2bNE5faJz4M7

Violin
VocalMridangam

2
3



Why andHow?

❖ 2
4Creating rich datasets for  

supervised source separation

❖ Music Information Retrieval (MIR)  
tasks

Needs Goals

❖

❖

Data independent models

Faster, simpler, and efficient for  
live recordings



Learning basedFrameworks

❖

2
5

❖

CAEs: TF domain

Treats interference as noise

❖

❖

t-UNet: Waveform domain

Estimates interference  
strength and uses that  
information to reduce bleed



Catch me at the poster session!
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Problem Description 3

Conventional Speech-to-Speech approach

Direct Speech-to-Speech approach



Problem Description 4

Speech-to-Speech translation and  voice interpolation framework



Methodology 5

We fine-tuned the speech-to-speech translation model proposed by Lee et al. [1] for  
English-to-German translation.

Direct Speech-to-Speech Translation with Discrete  Units



Methodology 6

We propose model architecture inspired by Grill et al.   [2].



Results 7

▶We have qualitative results for Speech-to-speech translation but have yet to  
work  on quantitative results and comparisons.

▶ Voice interpolation work still in progress. We are using the Crema-d dataset,  
which contains 7442  clips of 91  actors for experiments.

▶We faced a mode collapsing issue using previous implementations while  
training, where we used triplet loss for contrastive learning. The encoder  
learned  to generate  the same  embedding for content.



Conclusion 8

▶ Finetuned a direct Speech-to-Speech translation system [3] that directly  
converts source speech to target speech, bypassing traditional   pipelines.

▶ The method employs a  pretrained HuBERT model trained with
self-supervised learning and K-Means to create discrete unit   
representation.

▶ Our voice interpolation framework describes a novel approach to generate  
multiple speech variations of a  speaker.



Future Work 9

▶ Analysis of the voice characteristics space by incorporating the output of 
the  Speech-to-Speech translation system has  to be performed.

▶ Performing quantitative analysis of described Speech-to-Speech 
translation  and voice interpolation method.

▶ Currently, our Speech-to-Speech translation and voice interpolation 
framework  incorporates a  two-stage pipeline that can be incorporated into 
a   single
end-to-end network.
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Human Speaks ASR model Transcript

Dataset Neural  
model

AnnotatorTranscribe
❑ Time Consuming
❑ Costly
❑ Labor-intensive

ASR Annotation Tool
Nagarathna R  

Thishyan Raj T

Raja Ravi Teja Chaganti

Solution



Aspects to look into while building a tool
• Automatic chunking of long audio
• ASR system
• Confidence estimation
• Recommendation system
• Interface



Long audios
• Raw audios are generally long audios
• It takes time for an annotator to chunk the  

audios by listening to the audios
• Long audio – Use VAD/AED to chunk  

audio at non-speech regions

ASR Model
• Step 1 - Check for pre-trained

models for the desired language

• Step 2 - If pre-trained model not
available, find open source ASR
datasets.

• Step 3 - If no dataset is available,
manually transcribe a few hours of
data.

• Step 4 - Take a pre-trained model.
Use transfer learning to build an
ASR model.



Confidence Estimation

• Prediction from neural network is over  
confident.

• A method is required to estimate the  
correctness of the predictions.

• Maximum class probability is usually  
high even for incorrect predictions

• There are various methods to estimate  
the confidence on the predictions:

• Temperature scaling of the logits
• Auxiliary model
• Ensemble



Recommendation System

• Find alternative words of low confident words.

• Recommendation system

• Add words in a dictionary to a tree based on  
similarity metric. Find close matching words for  
less confident words.

• Train an auxiliary model to find the correct word  
based on context.



• Transcripts highlights as audio plays

• To correct the transcript, play the corresponding audio segment

• Highlight least confidence words to make quick corrections.

• Generate final transcript along with timestamps, convenient for users to chunk the long  
audio and create chunks for training the ASR system.

Interface
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Scenarios of Supervised Learning

• CASE 3 – Train on one domain – test on another domain
oDifferent feature space
oDifferent label space and label shift

MELODY ESTIMATION!!

Datasets
a) MIR1K
b) ADC2004
c) MIREX05
d) HAR



Solution?

• Active adaptation.
• Train Data: MIR1K1

• Test Data: ADC20042, MIREX052, HAR3

1 https://sites.google.com/site/unvoicedsoundseparation/mir-1k
2 http://labrosa.ee.columbia.edu/projects/melody/
3 https://zenodo.org/record/8252222

https://sites.google.com/site/unvoicedsoundseparation/mir-1k
http://labrosa.ee.columbia.edu/projects/melody/
https://zenodo.org/record/8252222
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wav2tok: Deep Sequence Tokenizer for Audio Retrieval



Enc-Dec RNN Acoustic Word Embeddings
learning via Pairwise Prediction



Enc-Dec RNN Acoustic Word Embeddings
learning via Pairwise Prediction
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UNSUPERVISED DOMAIN 
ADAPTATION FOR SOUND EVENT 
DETECTION IN MUSIC APPLICATIONS
(ISMIR 2022 LBD)
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MS-R Student
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Sound Event Detection for non-
overlapping audios (K-class):

• Use Synthetic Audio, and no labels of real 
audio.

• Learn class boundaries with labelled synthetic 
audio:

• Push class boundaries for real 
audio towards synthetic audio:

• Generate new features for real 
audio within newly formed class 
boundary:

Experiments for 10 classes



Audio Search
Akshay Raina, Sagar Dutta



Acoustic Event Detection
Akshay Raina, Sayeedul I Sheikh, Vipul Arora



Automatic Detection and Analysis of Singing Mistakes for Music Pedagogy
Vipul Arora, Suraj Jaiswal, Akshay Raina, Sumit Kumar

Narottam: A Smart Platform for Music Education

HarMIDI: Sensor System To Read MIDI from Indian Harmoniums

Suraj Jaiswal, Vipul Arora

Suraj Jaiswal, Vipul Arora

See you for posters and demos!
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