
Audio
Fingerprinting
Anup Singh

Tutorial Outline

1
Introduction

2
Fingerprinting

Literature
Review

4

3
Indexing

1
Introduction

What’s this song?

Audio fingerprinting

● Generates content-based summary of an audio signal.

● Allows efficient storage and retrieval of similar audio in large database.

Applications

Music
Identification

Broadcast
monitoring

Second screen
applications

Challenges
Robustness

against audio
distortions such as
noise and
reverberation

Search speed

to expedite the
retrieval process to
enhance user
experience

Computational
viable

for practical
deployment

Modules

Audio Processing

Includes audio segmentation
and pre-processing

1

Representation
Learning

Generates compact and
robust audio representations

2

Indexing

Enables fast retrieval

3

2
Fingerprinting

01 Audio Processing

● Waveform: A digitized audio signal.

● Preprocessing: Resampling, filtering, audio
normalization

● Time-frequency representation: 2-D matrix
representation of frequency contents of an
audio signal over time.

○ Spectrograms and its variants
○ Very few audio fingerprinting approaches

directly process waveforms

Time

Fr
eq

ue
nc

y

Formants

source:
https://jvbale
n.github.io/n
otes/wavefor
m.html

https://jvbalen.github.io/notes/waveform.html
https://jvbalen.github.io/notes/waveform.html
https://jvbalen.github.io/notes/waveform.html
https://jvbalen.github.io/notes/waveform.html

02 Representation Learning
Transform audio segments into low-dimensional vectors.

Rule-based

● Handcrafted features
● Not resilient against high distortion

environments.
● Exemplar:

○ Shazam: peak based
○ Philips:

energy-difference-based
○ Waveprint: top-k wavelets

Learning-based

● Real-valued features
● Highly resilient
● Exemplar:

○ RNN-based
○ CNN-based
○ Transformer-based

https://www.ee.columbia.edu/~dpwe/papers/Wang03-shazam.pdf
https://archives.ismir.net/ismir2002/paper/000014.pdf
https://www.sciencedirect.com/science/article/pii/S0031320308001702
https://dl.acm.org/doi/abs/10.1145/3380828
https://arxiv.org/pdf/2210.08624.pdf
https://ieeexplore.ieee.org/abstract/document/10096103/

02 Deep embeddings

embedding

● Deep neural networks as nonlinear
embedding function.

● Gradient descent optimization

● Deep embeddings↔fingerprints

02 Self-supervised learning

Shared neural network
parameters and are relevant, not

 : anchor sample
 : positive sample

 : negative sample

Learning

02 Self-supervised learning

Learning

● Input: log Mel spectrogram (segment):

● Model: CNN

● Training: Contrastive learning with

○ Distorted audio:

○ Any other audio:

Contrastive Loss

02 Contrastive Training

● Distortions are randomly applied:

○ Real-world noises: 0-25 dB SNR

○ Reverberation: RIRs with t60 levels ranging from 0.1s - 0.8s

○ Time offset: 50 ms

Coding time!

3
Indexing

03 Retrieval

MATCHING ALGORITHM

03 Retrieval

● N D-dim database vectors
● Task: For the given query, find the closest

vector from the database
● Linear scan: O(ND), slow
● ANN: Sublinear query time

○ don’t necessarily have to be exact
neighbors

○ Trade off: runtime, accuracy and
memory-consumption

● ANN algorithms: LSH (hash-based), PQ
(vector quantization-based), HNSW (graph
based)

03 Indexing

EMB_DB

FILES

METADATA

FP.index

[song_1.MP3, song_2.MP3, …., song_N.mp3]

[(1, 0.0), (1, 0.1), (1,0.2) … (43, 10.0), (43, 10.1), …

(100, 34.2), (100,34.3)]

N x d

03 Data
● Music: Free Music Archive

Michaël Defferrard, Kirell Benzi, Pierre Vandergheynst, and Xavier Bresson. Fma: A dataset for music analysis.
arXiv preprint arXiv:1612.01840, 2016.

03 Evaluation
● Coarse search: Audio file with maximum

matching segments

● Fine-grained search:

○ start - end matching times

○ find candidate sequence of segments

○ edit distance

● Metric:

○

○

Sorted items

R

R

R

R

Rank=1 Rank=2 Rank=3 Rank=4 Rank=5

Coding time!

4
Literature
Review

04 Shazam

● Identifies frequencies of peak intensity

● Generates pairs of anchor and target peaks
and their corresponding time difference.

● Hashes each pair into a hash table.

● Hash table lookup for query matching.

Avery Wang et al. An industrial strength audio search algorithm. In ISMIR, volume 2003,
pp. 7–13, 2003.

04 ML approaches

● Enhances interesting spatial patches by assigning
more weight to time indices and frequency bands
containing salient patches

Singh, Anup, Kris Demuynck, and Vipul Arora. "Attention-based audio embeddings for
query-by-example." arXiv preprint arXiv:2210.08624 (2022).

04 ML approaches

Gfeller, Beat, et al. "Now playing: Continuous low-power music recognition." arXiv
preprint arXiv:1711.10958 (2017).

● CNN architecture with spatially separable convolutions
layers.

● Divide-and-encode: splits embedding into chunks
● Triplet loss

04 LSH
● Map similar samples to same hash code

● K random hyperplanes: h1, h2, ... hK ⇒ 2^K disjoint

partitions of space.

● K-bit hash code for sample a: Step [aTh1 a
Th2 … a

ThK]

● Exact comparison of a with points mapped to same

hash bucket - May miss near neighbors

● Repeat L times w.r.t different set of K hyperplanes.

● Distance computation with candidates mapped to

same hash code as a across L tables.

Lv, Qin, et al. "Multi-probe LSH: efficient indexing for high-dimensional similarity search." Proceedings of the 33rd international
conference on Very large data bases. 2007.

Source:https://
www.pinecone
.io/learn/series/
faiss/locality-se
nsitive-hashing
/

Source:https://
www.research
gate.net/public
ation/3143002
45_Feature_M
atching_of_Mu
lti-view_3D_M
odels_Based_
on_Hash_Bina
ry_Encoding

https://www.pinecone.io/learn/series/faiss/locality-sensitive-hashing/
https://www.pinecone.io/learn/series/faiss/locality-sensitive-hashing/
https://www.pinecone.io/learn/series/faiss/locality-sensitive-hashing/
https://www.pinecone.io/learn/series/faiss/locality-sensitive-hashing/
https://www.pinecone.io/learn/series/faiss/locality-sensitive-hashing/
https://www.pinecone.io/learn/series/faiss/locality-sensitive-hashing/
https://www.pinecone.io/learn/series/faiss/locality-sensitive-hashing/

04 LSH
● Computational Cost:

○ N points, D dimensional, K hyperplanes

○ DK: generate K-bit hash code ⇒ Mapping sample to a

hash bucket. Cost of dot product of a sample with K

hyperplanes.

○ Assume on average, each bucket contains: N/2^K

○ Exact comparison cost: DN/2^K

○ Repeat everything L times (no. of hash tables)

○ Cost: LDK + LDN/2^K → O(log N), if K = log N

Lv, Qin, et al. "Multi-probe LSH: efficient indexing for high-dimensional similarity search." Proceedings of the 33rd international
conference on Very large data bases. 2007.

04 Recent Works

Website: https://faiss.ai/

https://faiss.ai/

For more information …
● Contact me at:

○ Email: anup.singh@ugent.be

○ Twitter: @15_anup

mailto:anup.singh@ugent.be
https://twitter.com/15_anup

Thank you!

