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1
Introduction



What’s this song?



Audio fingerprinting

● Generates content-based summary of an audio signal.

● Allows efficient storage and retrieval of similar audio in large database.



Applications

Music 
Identification

Broadcast 
monitoring

Second screen 
applications



Challenges
Robustness 

against audio 
distortions such as 
noise and 
reverberation

Search speed

to expedite the 
retrieval process to 
enhance user 
experience

Computational 
viable

for practical 
deployment



Modules 

Audio Processing

Includes audio segmentation 
and pre-processing   

1

Representation 
Learning

Generates compact  and 
robust audio representations

2

Indexing

Enables fast retrieval 

3



2
Fingerprinting



01  Audio Processing

● Waveform: A digitized audio signal.  

● Preprocessing: Resampling, filtering, audio 
normalization

● Time-frequency representation: 2-D matrix 
representation of frequency contents of an 
audio signal over time. 

○ Spectrograms and its variants
○ Very few audio fingerprinting approaches 

directly process waveforms
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n.github.io/n
otes/wavefor
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https://jvbalen.github.io/notes/waveform.html
https://jvbalen.github.io/notes/waveform.html
https://jvbalen.github.io/notes/waveform.html
https://jvbalen.github.io/notes/waveform.html


02  Representation Learning
Transform audio segments into low-dimensional vectors.

Rule-based 

● Handcrafted features 
● Not resilient against high distortion 

environments.
● Exemplar: 

○ Shazam: peak based  
○ Philips: 

energy-difference-based
○ Waveprint: top-k wavelets

Learning-based 

● Real-valued features
● Highly resilient
● Exemplar: 

○ RNN-based 
○ CNN-based 
○ Transformer-based  

https://www.ee.columbia.edu/~dpwe/papers/Wang03-shazam.pdf
https://archives.ismir.net/ismir2002/paper/000014.pdf
https://www.sciencedirect.com/science/article/pii/S0031320308001702
https://dl.acm.org/doi/abs/10.1145/3380828
https://arxiv.org/pdf/2210.08624.pdf
https://ieeexplore.ieee.org/abstract/document/10096103/


02  Deep embeddings 

embedding

● Deep neural networks   as nonlinear 
embedding function.

● Gradient descent optimization

● Deep embeddings↔fingerprints



02  Self-supervised learning 

Shared neural network 
parameters            and      are relevant, not 

     : anchor sample
               : positive sample

     : negative sample

Learning



02  Self-supervised learning 

Learning

● Input: log Mel spectrogram (segment):  

● Model: CNN 

● Training: Contrastive learning with

○ Distorted audio:  

○ Any other audio:

Contrastive Loss



02 Contrastive Training

● Distortions are randomly applied:

○ Real-world noises: 0-25 dB SNR

○ Reverberation: RIRs with t60 levels ranging from 0.1s - 0.8s

○ Time offset: 50 ms 



Coding time!
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03 Retrieval  

MATCHING ALGORITHM



03 Retrieval 

● N D-dim database vectors 
● Task: For the given query, find the closest 

vector from the database
● Linear scan: O(ND), slow 
● ANN: Sublinear query time

○ don’t necessarily have to be exact 
neighbors

○ Trade off: runtime, accuracy and 
memory-consumption

● ANN algorithms: LSH (hash-based), PQ 
(vector quantization-based), HNSW (graph 
based)



03 Indexing 

EMB_DB

FILES

METADATA

FP.index

[song_1.MP3, song_2.MP3, …., song_N.mp3]

[(1, 0.0), (1, 0.1), (1,0.2) … (43, 10.0), (43, 10.1), … 

(100, 34.2), (100,34.3)]

N x d



03 Data
● Music: Free Music Archive

Michaël Defferrard, Kirell Benzi, Pierre Vandergheynst, and Xavier Bresson. Fma: A dataset for music analysis. 
arXiv preprint arXiv:1612.01840, 2016.



03 Evaluation 
● Coarse search: Audio file with maximum 

matching segments

● Fine-grained search: 

○ start - end matching times

○ find candidate sequence of segments

○ edit distance

● Metric: 

○

○  

Sorted items

R

R

R

R

Rank=1 Rank=2 Rank=3 Rank=4 Rank=5



Coding time!
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04  Shazam 

●  Identifies frequencies of peak intensity

● Generates pairs of anchor and target peaks 
and their corresponding time difference.

● Hashes each pair into a hash table.

● Hash table lookup for query matching.

Avery Wang et al. An industrial strength audio search algorithm. In ISMIR, volume 2003, 
pp. 7–13, 2003.



04 ML approaches

● Enhances interesting spatial patches by assigning 
more weight to time indices and frequency bands 
containing salient patches

Singh, Anup, Kris Demuynck, and Vipul Arora. "Attention-based audio embeddings for 
query-by-example." arXiv preprint arXiv:2210.08624 (2022).



04 ML approaches

Gfeller, Beat, et al. "Now playing: Continuous low-power music recognition." arXiv 
preprint arXiv:1711.10958 (2017).

● CNN architecture with spatially separable convolutions 
layers.

● Divide-and-encode: splits embedding into chunks
● Triplet loss



04 LSH 
● Map similar samples to same hash code 

● K random hyperplanes: h1, h2, ... hK ⇒   2^K disjoint 

partitions of space.

● K-bit hash code for sample a: Step [aTh1 a
Th2 …  a

ThK] 

● Exact comparison of a with points mapped to same 

hash bucket - May miss near neighbors

● Repeat L times w.r.t different set of K hyperplanes.

● Distance computation with candidates mapped to 

same hash code as a across L tables.

Lv, Qin, et al. "Multi-probe LSH: efficient indexing for high-dimensional similarity search." Proceedings of the 33rd international 
conference on Very large data bases. 2007.

Source:https://
www.pinecone
.io/learn/series/
faiss/locality-se
nsitive-hashing
/

Source:https://
www.research
gate.net/public
ation/3143002
45_Feature_M
atching_of_Mu
lti-view_3D_M
odels_Based_
on_Hash_Bina
ry_Encoding

https://www.pinecone.io/learn/series/faiss/locality-sensitive-hashing/
https://www.pinecone.io/learn/series/faiss/locality-sensitive-hashing/
https://www.pinecone.io/learn/series/faiss/locality-sensitive-hashing/
https://www.pinecone.io/learn/series/faiss/locality-sensitive-hashing/
https://www.pinecone.io/learn/series/faiss/locality-sensitive-hashing/
https://www.pinecone.io/learn/series/faiss/locality-sensitive-hashing/
https://www.pinecone.io/learn/series/faiss/locality-sensitive-hashing/


04 LSH 
● Computational Cost:

○ N points, D dimensional, K hyperplanes

○ DK: generate K-bit hash code ⇒ Mapping sample to a 

hash bucket. Cost of dot product of a sample with K 

hyperplanes.  

○ Assume on average, each bucket contains: N/2^K

○ Exact comparison cost: DN/2^K

○ Repeat everything L times (no. of hash tables)

○ Cost: LDK + LDN/2^K → O(log N),  if K = log N

Lv, Qin, et al. "Multi-probe LSH: efficient indexing for high-dimensional similarity search." Proceedings of the 33rd international 
conference on Very large data bases. 2007.



04 Recent Works 



Website: https://faiss.ai/

https://faiss.ai/


For more information …
● Contact me at:

○ Email: anup.singh@ugent.be

○ Twitter: @15_anup

mailto:anup.singh@ugent.be
https://twitter.com/15_anup


Thank you!


